Design and Implementation of Cold-Hardened Seismic Stations T. Parker, B. Beaudoin, B. Bonnett, J. Fowler, and K. Anderson ## Development & IPY Support - MRI Development of a Power and Communications System for Remote Autonomous Polar Observations - Second year development deployed this winter - Leveraged development to support IPY science - * MRI Acquisition of Broadband Seismic Stations for Polar Regions - Acquisition of 37 cold-hardened stations - * 20 currently deployed at AGAP & POLENET ## Current Development #### * Motivation - Demand for year-round recording - *Unify equipment pool - Simplify field logistics & support - ***NSF** ## Current Development - * Reduce Power - *Work with manufacturers - Low bandwidth SOH - Harness DAS heat - Increase battery potential - Operate within specification - Simplify deployment - Minimize ground time & payload - Utilize Primary batteries - *Simple - Dependable at extreme cold - *Highest energy density #### PASSCAL Polar Station - Proven year round operation - * Low power (<1.5W)</p> - Leverage DAS heat to maintain station temperature ~20-25°C above ambient - 275 kg total station weight (with Lithium) - * Easily deployed - * AGAP stations installed on average 2 hours - * 2-way station communications - **♦ SOH** - Command & control - * Power management ### Colder rated Q330s - * Rated to -45°C, was -40°C - 32MB of buffering allows longer time between baler cycles saving 2/3 of the baler power budget from last year - 16GB of -45°C rated station storage device (media rated to -55°C) - * Power budget for Q330, 3 channels @ 40sps and continuous GPS is ~0.8 watts ## Cold Rated Guralp 3T - Leveraged GSN development of cold rated borehole seismometer - Coldest rated and lowest powered broadband sensor - 0.3 watts, -55°C rated, tested to -60°C #### Nanometrics Trillium 240 Successfully used for one season at South Pole 20 currently deployed for POLENET and AGAP * 0.65 watts, -20°C rated # Development of SOH Iridium Telemetry - Deployed but still in alpha testing of phase 1 of a two phase development - Yearly power budget for once-aday SOH, 5AH - Data rate ~2Kb/s - Status and data snippets - Command and control of a subset of important station commands and reporting schedules - Developed in collaboration with XEOS Technologies - Integration of Vaisala weather station - data averaging, reporting and power control 10s data snippet from Antarctica #### Station Box - *Design - *Hardigg Case - *94cm x 94cm x 94cm - *7.6 cm Thick Foam Insulation - *2.5 cm Thick Vacuum Panel - *2.5 cm Thick Foam Insulation - \$1.9 cm Wall Cable Insulation EGU 2008 #### Station Box Performance #### Sensor Vault: Rock Site - * Offield Mini-Vault - Phenolic Sensor Base - * Double-Wall Insulated Dome - * Stretched Steel Dome-Retainer #### Sensor Vault: Snow - * Phenolic Sensor Base - * Foam Base - Sensor Insulation - Double Wall Insulated Dome **EGU 2008** #### Solar Panels: A-Frame - * Folded size: 203cm x 122cm x 15cm - Weight: 57 kg - Quickly Deployable - * Use on Rock or Snow - 2x 80 Watt Sharp Solar Panels - Integrated Enclosure Cradle - Aluminum panel backing #### Solar Panels: Tri-Panel - Folded Size:213cm x 122cm x 15cm - Weight: 68 kg - Quickly Deployable - 3x 80 Watt Sharp Solar Panels ## Power Management Box - New power switching board, lower parasitic power - Switches between chargeable and primary batteries - Charge controller, can use one charging source for two battery banks e.g. preferential charging - LVD and HVR settable - Cold culled to -50°C, 5 out of 30 fail because of charge controllers #### Batteries - Lithium Thionyl Chloride primary battery pack for winter operations - *190 A-h/unit between 18.5-15.5V - ♦ 10 unit pack - *30,000 W-h at room temperature - *23,000 W-h at -30°C - ♦ 16,500 W-h at -55°C - AGM secondary, solar charged - *2x100 A-h 190 A-h unit prior to shrink wrap ## Power Switching at PMC01 DAS Temperature > System Voltage ## New Development - * New station box design - * Better insulated - Double vacuum panel - Insulated cable harness - * More durable - Hard liner - * More easily fabricated - Smaller and lighter - *76cm x 76cm x 84cm - * New solar mount - Low wind, high-latitude environment - Single pole - 32kg - * 3x30W panels ## New Development - New cold-rated solar charge controller development - * Iridium phase two - Request event data - Realtime low sample rate data (<10Hz)</p> - Parallel iridium development with Quanterra - Alternate battery technologies - *Lithium Ion ## More Information & Design Docs http://www.passcal.nmt.edu/Polar