Design and Implementation of Cold-Hardened Seismic Stations

T. Parker, B. Beaudoin, B. Bonnett, J. Fowler, and K. Anderson

Development & IPY Support

- MRI Development of a Power and Communications System for Remote Autonomous Polar Observations
 - Second year development deployed this winter
 - Leveraged development to support IPY science
- * MRI Acquisition of Broadband Seismic Stations for Polar Regions
 - Acquisition of 37 cold-hardened stations
 - * 20 currently deployed at AGAP & POLENET

Current Development

* Motivation

- Demand for year-round recording
- *Unify equipment pool
- Simplify field logistics & support
- ***NSF**

Current Development

- * Reduce Power
 - *Work with manufacturers
 - Low bandwidth SOH
- Harness DAS heat
 - Increase battery potential
 - Operate within specification
- Simplify deployment
 - Minimize ground time & payload
- Utilize Primary batteries
 - *Simple
 - Dependable at extreme cold
 - *Highest energy density

PASSCAL Polar Station

- Proven year round operation
- * Low power (<1.5W)</p>
- Leverage DAS heat to maintain station temperature ~20-25°C above ambient
- 275 kg total station weight (with Lithium)
- * Easily deployed
 - * AGAP stations installed on average 2 hours
- * 2-way station communications
 - **♦ SOH**
 - Command & control
- * Power management

Colder rated Q330s

- * Rated to -45°C, was -40°C
- 32MB of buffering allows longer time between baler cycles saving 2/3 of the baler power budget from last year
- 16GB of -45°C rated station storage device (media rated to -55°C)
- * Power budget for Q330, 3 channels @ 40sps and continuous GPS is ~0.8 watts

Cold Rated Guralp 3T

- Leveraged GSN development of cold rated borehole seismometer
- Coldest rated and lowest powered broadband sensor
- 0.3 watts, -55°C rated, tested to -60°C

Nanometrics Trillium 240

Successfully used for one season at South Pole

20 currently deployed for POLENET and AGAP

* 0.65 watts, -20°C rated

Development of SOH Iridium Telemetry

- Deployed but still in alpha testing of phase 1 of a two phase development
- Yearly power budget for once-aday SOH, 5AH
- Data rate ~2Kb/s
- Status and data snippets
- Command and control of a subset of important station commands and reporting schedules
- Developed in collaboration with XEOS Technologies
- Integration of Vaisala weather station - data averaging, reporting and power control

10s data snippet from Antarctica

Station Box

- *Design
 - *Hardigg Case
 - *94cm x 94cm x 94cm

- *7.6 cm Thick Foam Insulation
- *2.5 cm Thick Vacuum Panel
- *2.5 cm Thick Foam Insulation
- \$1.9 cm Wall Cable Insulation

EGU 2008

Station Box Performance

Sensor Vault: Rock Site

- * Offield Mini-Vault
- Phenolic Sensor Base
- * Double-Wall Insulated Dome
- * Stretched Steel Dome-Retainer

Sensor Vault: Snow

- * Phenolic Sensor Base
- * Foam Base
- Sensor Insulation
- Double Wall Insulated Dome

EGU 2008

Solar Panels: A-Frame

- * Folded size: 203cm x 122cm x 15cm
- Weight: 57 kg
- Quickly Deployable
- * Use on Rock or Snow
- 2x 80 Watt Sharp Solar Panels
- Integrated Enclosure Cradle
- Aluminum panel backing

Solar Panels: Tri-Panel

- Folded Size:213cm x 122cm x 15cm
- Weight: 68 kg
- Quickly Deployable
- 3x 80 Watt Sharp Solar Panels

Power Management Box

- New power switching board, lower parasitic power
 - Switches between chargeable and primary batteries
- Charge controller, can use one charging source for two battery banks e.g. preferential charging
- LVD and HVR settable
- Cold culled to -50°C, 5 out of 30 fail because of charge controllers

Batteries

- Lithium Thionyl Chloride primary battery pack for winter operations
 - *190 A-h/unit between 18.5-15.5V
 - ♦ 10 unit pack
 - *30,000 W-h at room temperature
 - *23,000 W-h at -30°C
 - ♦ 16,500 W-h at -55°C
- AGM secondary, solar charged
 - *2x100 A-h

190 A-h unit prior to shrink wrap

Power Switching at PMC01

DAS Temperature

> System Voltage

New Development

- * New station box design
 - * Better insulated
 - Double vacuum panel
 - Insulated cable harness
 - * More durable
 - Hard liner
 - * More easily fabricated
 - Smaller and lighter
 - *76cm x 76cm x 84cm

- * New solar mount
 - Low wind, high-latitude environment
 - Single pole
 - 32kg
 - * 3x30W panels

New Development

- New cold-rated solar charge controller development
- * Iridium phase two
 - Request event data
 - Realtime low sample rate data (<10Hz)</p>
- Parallel iridium development with Quanterra
- Alternate battery technologies
 - *Lithium Ion

More Information & Design Docs

http://www.passcal.nmt.edu/Polar